프린이씨롯메

프린이씨롯메

  • 분류 전체보기 (242)
    • 선형대수학 (0)
    • 자료구조 (20)
    • 알고리즘 (48)
    • 신호및시스템 (10)
    • 영상신호처리 (1)
    • 머신러닝 (8)
    • RF시스템 (3)
    • Computer Vision (16)
    • 로봇 내비게이션 (1)
    • Deep Learning (20)
    • Active Learning (1)
    • 3D Vision (36)
      • Nerd's NeRF (2)
      • NeRF with Real-World (14)
      • Urban Scene Reconstruction (5)
    • 3D Object Detection (3)
    • View Synthesis (37)
    • Diffusion (14)
    • text-to-3D (17)
    • Human Pose Estimation (0)
    • Robotics (6)
  • 홈
  • 태그
  • 방명록
RSS 피드
로그인
로그아웃 글쓰기 관리

프린이씨롯메

컨텐츠 검색

태그

machinelearning 머신러닝 RF시스템 컴퓨터 자료구조 Python PAPER 비전 브루트포스 포스 프로그래머스 컴퓨터비전 파이썬 백준 해시 R-CNN 논문 브루트 코딩테스트 알고리즘

최근글

댓글

공지사항

아카이브

machinelearning(3)

  • [머신러닝] Support Vector Machine

    import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn import datasets from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.model_selection import train_test_split plt.close("all") iris=datasets.load_iris() X=iris["data"][50:150, (2, 3)] Y=iris["target"][50:150] scaler=StandardScaler() scaler.fit(X) X_std=scaler.transform(X) [X_tr..

    2020.09.20
  • [머신러닝] Kerner Trick & Lagrangue Multiplier

    import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn import datasets from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.model_selection import train_test_split plt.close("all") [X, Y]=datasets.make_moons(n_samples=200, shuffle=True, noise=0.2, random_state=15) #[X, Y]=datasets.make_circles(n_samples=200, shuffle=True, noise=0...

    2020.09.20
  • [머신러닝] Classification2 - Clustering

    import pandas as pd import numpy as np import matplotlib.pylab as plt import scipy as sp import scipy.stats plt.close("all") dfLoad=pd.read_csv('https://sites.google.com/site/vlsicir/ClassificationSample2.txt', sep='\s+') samples=np.array(dfLoad) x=samples[:,0] y=samples[:,1] N=len(x) numK=2 #Initialize categorial distribution pi=np.ones([1, numK])*(1/numK) mx=np.mean(x) my=np.mean(y) sx=np.std(..

    2020.09.20
이전
1
다음
티스토리
© 2018 TISTORY. All rights reserved.

티스토리툴바